Oxygenates in Vermont Gasoline and Groundwater

VTDEC/WMD Study Using USEPA/OUST Funding Fall 2002-Spring 2006

Outline

- Objectives of Study (Phase I and II)
 - Methodology
 - Fuel Sample Results
 - Groundwater Sample Results
 - Statistical Analysis (Phase I)
 - Phase II Overview
 - Testing Theory
 - Statistical Analysis (Phase II)
 - Phase II results
 - Conclusions

Objectives of Study – PHASE I

- To determine oxygenate concentrations in different grades of fuels (regular, mid-grade, and super).
- To determine oxygenate concentrations in groundwater at LUST sites.
 - Transit down the plume axis
 - In source area wells
 - In highly contaminated wells outside of the source area
 - In contaminated wells near the leading edge of the plume

Objectives of Study – PHASE II

 To compare approaches of different EPA analytical methodologies for fuel oxygenates in groundwater at several wells for numerous sites

- To determine if current COC list (MTBE) is appropriate
 - Or, if other ethers and TBA should be analyzed at all petroleum sites

Wells Being Sampled

Methodology (Product)

 DEC staff to obtain product samples from various stations around the state.

 Samples taken during summer & winter periods to determine variations in product composition.

 Approximately 60 stations sampled (240 samples)

Methodology (Product)

Samples analyzed in tenths of a percent for:

Ethanol	ETBE	Benzene
Methanol	TAME	Aromatics
TBA	DIPE	Olefins
MTBE	O ₂	Saturates

Lab uses GS360 fuel analyzer

Methodology (GW)

- Consultants obtains samples from MWs selected by DEC project managers during routine sampling events
- Samples sent to DEC lab
- Approximately 60 stations (180 samples)
- Samples analyzed with a detection limit in µg/L

Methodology (GW)

Samples analyzed for:

MTBE	BTEX
TBA	TMBs
ETBA	Naphthalene
DIPE	TAME

 Samples analyzed with GC/MS by EPA Method 8260

Fuel Sample Results (PHASE I)

	MTBE	TBA	Ethanol	Methanol
Mean	2.3 %	0.3 %	0.05 %	0.2 %
Min	0.05 %	0.05 %	0.05 %	0.05 %
Max	12.9 %	0.6 %	0.05 %	0.4 %

	ETBE	TAME	DIPE O ₂		Benzene
Mean	0.1 %	1.4 %	0.05 %	0.8 %	1.0 %
Min	0.05 %	0.05 %	0.05 %	0.16 %	0.5 %
Max	0.4 %	5.0 %	0.05 %	2.35 %	1.5 %

- Oxygenates higher in summer months than winter months
- Oxygenates higher in super than regular

Groundwater Results – PHASE I

	Source	Down 1	Down 2
MTBE	345,0006	93,1006	519 ⁶
TBA	811 ³	811 ³	ND
ETBE	6227	240 ⁷	12
DIPE	2964	26 ⁸	2 ²
TAME	20,3007	15,5006	9991
Benzene	31,1004	48005	8004
BTEX	133,000 ¹	15,000 ⁵	30004

- Maximum concentration measured in μg/L
- X¹ Superscript indicates site identifier

Statistical Analysis – PHASE I

 Contracted with University of Vermont (UVM) to perform statistical analysis

- Data on previous slides the preliminary evaluation only
- Follow-up data evaluation not yet conducted

Phase II Work

 All MWs sampled during 2002 & early 2003 were re-sampled in 2004

- Three samples per MW, two preserved with HCI, one with TSP
 - One sample analyzed utilizing "normal" protocol (20°C, GC/MS)
 - Remaining two samples heated to 80°C (following EPA recommendations)

Theory of Testing

- Samples analyzed at 20°C w/HCl preservative (WOXY method) won't reveal alcohols -namely TBA- at low detection limits.
- Samples heated to 80°C and preserved with HCl (HCl heated method) will reveal low levels of TBA, but also lower levels of ethers, due to hydrolysis.
- To prevent these issues, EPA has recommended preserving samples with a base and heating samples to 80°C (TSP heated method), to drive out alcohols and eliminate hydrolysis.

Statistical Analysis – PHASE II

- Data has been hand-groomed
 - -Some data still questionable, though unlikely to significantly alter the results
- Data for each analytical method (WOXY, HCI Heated, and TSP Heated) entered into JMP to conduct one-way analyses of varience (ANOVA)

ANOVA – Sample Results

ANOVA – Sample Results

ETBE ANOVA Results

Summary of Fit

f	
Rsquare	0.001071
Adj Rsquare	-0.02329
Root Mean Square Error	134.6854
Mean of Response	25.81941
Observations (or Sum Wgts)	85

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Analysis Type	2	1595.2	797.6	0.0440	0.9570
Error	82	1487493.3	18140.2		
C. Total	84	1489088.4			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
HCL Heated	30	21.4593	24.590	-27.46	70.377
TSP Heated	30	24.9090	24.590	-24.01	73.827
WOXY	25	32.1440	26.937	-21.44	85.730

Std Error uses a pooled estimate of error variance

Means Comparisons

Dif=Mean[i]- Mean[j]	WOXY	TSP Heated	HCL Heated
WOXY	0.000	7.235	10.685
TSP Heated	-7.235	0.000	3,450
HCL Heated	-10.685	-3.450	0.000

Alpha = 0.05

ANOVA – Sample Results

- MTBE samples split into two groups (<1000 μg/L and >1000 μg/L) for ANOVA
- Also conducted an ANOVA on all MTBE samples
- Determined that there is no statistical difference between the methodologies at high and low concentrations

ANOVA - Data

		Mean		E Dotio	Drob . F	
Constituent	HCI Heated	TSP Heated	WOXY	F Ratio	Prob > F	
Benzene*	318.78	273.13	316.26	0.0766	0.9263	
DIPE	1.51	1.46	0.00	1.0854	0.3425	
ETBE*	21.46	24.91	32.14	0.0440	0.9570	
MTBE*	611.16	689.89	682.43	0.0203	0.9800	
TAME	343.72	247.55	280.56	0.0627	0.9393	
TBA*	66.88	70.28	84.62	0.0549	0.9466	

^{*} Data has been groomed to remove gross outliers

Results

 ANOVA results dictate that there is no statistical difference between any of the three analytical methods

- One caveat: at low concentrations, the standard approach may miss some ethers or TBA
 - Data indicates this may occur in approximately 10% of the samples (3 out of 32)

Laboratory Data - PHASE II

Site Number	Site Name	Well	Analysis Type	Benzene	DIPE	ЕТВЕ	MTBE	TAME	TBA	
			WOXY		0	0		0	DL 5000	
921256	Georgia Mobil	OW-3	HCI Heated	31.72	0	0	1.67	80.39	37.54	
			TSP Heated	35.1	0	0	0.53	0	15.34	
		Fleming Texaco FT-3	WOXY	0	0	0	0	0	DL 2000	
941597	Fleming Texaco		HCI Heated	0	0	0	0	0	157.75	
				TSP Heated	0	0	0	0	0	127.26
				WOXY	5	0	0	0		100 DL 200
992581 Derby Line Mainway		HCI Heated	43.48	0	0	0	0.58	90.93		
			TSP Heated	48.89	0	0	0	0.63	136.35	

Conclusions

- Even in a non-RFG state, there are high levels of oxygenates in the fuel and in GW
- At high concentrations, the type of analytical method utilized does not appear to mater
- At low concentrations, samples should be preserved with TSP and heated to 80°C
- Should look at all ethers and TBA, perhaps other alcohols as well

Next Steps

- Work with lab to clean up the data
- Compile all data into one dataset
- Compare (with JMP) all constituents with each other at varying concentration ranges
- Evaluate effects of remediation and MNA-only sites in source and two downgradient wells
- Evaluate inorganics for relation to COC levels in each of the MWs